porno
porno porno porno izle porno
Gene Therapy Net is the web resource for patients and professionals interested in gene therapy. The objectives of Gene Therapy Net are to be the information resource for basic and clinical research in gene therapy, cell therapy, and genetic vaccines, and to serve as a network in the exchange of information and news related to above areas. In addition, Gene Therapy Net provides an overview for sponsors and researchers of the different international regulations and guidelines associated with clinical gene therapy trials.


 
Posted on: 18 December 2014, source: Genetic Literacy Project
Gene therapy is back in the news, and in a big way as regular readers of the GLP would know. Studies involving the use of gene therapy are showing promising results for the cure of blood disorders, ‘bubble boy’ disease and HIV among others. Industry interest has also picked up and as positive results from clinical trials roll in, the market suddenly appears bullish on the future. But are we seeing enough to suggest that the technology is promising enough to make a major contribution to public health? Why does gene therapy have to be ‘back’ in the first place?
We offer a quick recap here, but for a more detailed read on the rise and fall (and rise again) of gene therapy, read this excellent narrative by Carl Zimmer in Wired or this comprehensive feature by Laura Cassiday in Nature. Things looked bright for gene therapy in the 90s when it promised to be a revolution that would let us move from just treating genetic diseases to curing them permanently. The big question surrounding gene therapy had always been how to effectively deliver the correct form of the gene into cells.

Register to read more...

 
Posted on: 14 December 2014, source: lexology.com
Advanced therapy medicinal products (ATMPs) are a category of innovative products comprising gene-therapy medicinal products (GTMPs),somatic cell-therapy medicinal products (sCTMP) and tissue-engineered products (TEPs). The main therapeutic areas are oncology and regenerative medicine, particularly in the field of cardiovascular conditions and haematology. Yet despite the harmonising EU legislation which has been in place since 2008, few products have reached the market in commercial form. In 2014 the European Commission issued a report on the implementation of ATMP legislation to date. On June 30 2014 the European Medicines Agency Committee for Advanced Therapies announced a public consultation on its revised guidance for ATMP classification. The consultation ended on October 31 2014.

Register to read more...

 
Posted on: 15 November 2014, source: Nature
Tiny changes in DNA can have huge consequences. For years, scientists have been trying to 'fix' these mutations in the hope of treating and potentially curing some of humanity's most devastating genetic diseases. After some tragic early setbacks (see Nature 420, 116–118; 2002), techniques that allow precise genetic manipulation have created a surge of research.
Although most existing treatments for genetic diseases typically only target symptoms, genetic manipulation or 'gene therapy' goes after the cause itself. The approach involves either inserting a functional gene into DNA or editing a faulty one that is already there, so the conditions most likely to prove curable are those caused by a single mutation. Sickle-cell disease is a perfect candidate: it is caused by a change in just one amino acid at a specific site in the β-globin gene. This results in the production of abnormal haemoglobin proteins that cause the red blood cells that house them to twist and become sickle shaped. The distorted cells get sticky, adhere to each other and block blood vessels, preventing oxygenated blood from flowing through

Register to read more...

 
Posted on: 6 November 2014, source: ieet.org
Maria Konovalenko and team put together a list of popular science video lectures on gene therapy – one of the most promising molecular medicine directions. What makes this approach different is that nucleic acid molecules, DNA and RNA, are used as therapeutic agents.

Register to read more...

 
Posted on: 9 October 2014, source: healio.com
A majority of boys with X-linked severe combined immunodeficiency experienced T-cell recovery and infection clearance after undergoing gene therapy with a self-inactivating gamma-retrovirus vector, according to study results. Salima Hacein-Bey-Abina, PharmD, PhD, of the department of biotherapy at Hôpital Necker – Enfants Malades in Paris, and colleagues sought to modify a Moloney murine leukemia virus-based gamma-retrovirus vector that expressed interleukin-2 receptor gamma-chain complementary DNA

Register to read more...

 
Posted on: 28 August 2014, source: Chemistry World
Dutch scientists have built a simple model of viruses’ protective coats in an attempt to create viral mimics that could fight diseases, as opposed to causing them. Rather than copying natural proteins, Renko de Vries from Wageningen University and his team designed and built a three-part protein from scratch that self-assembles around DNA.
‘The protein is exceedingly simple in its primary and secondary structure, yet captures the essence of self-assembly for the tobacco mosaic virus,’ de Vries tells Chemistry World. This knowledge could enable superior vehicles for getting DNA and RNA into cells, for example for gene therapy, and templates for improved DNA machines. ‘You could probably do the same with supramolecular chemistry,’ de Vries adds, ‘but the protein approach has the beauty that you can expand in the direction of synthetic biology.’

Register to read more...