Skip to main content
Gene Therapy Net RSS feed Follow Gene Therapy Net on Twitter LinkedIn - Gene Therapy Net discussion group Facebook - Gene Therapy Net
 

Disruptive CRISPR gene therapy is 150 times cheaper than zinc fingers and CRISPR is faster and more precise

Posted on: 13 June 2015, source: Nextbigfuture
Biologists have long been able to edit genomes with molecular tools. About ten years ago, they became excited by enzymes called zinc finger nucleases that promised to do this accurately and efficiently. But zinc fingers, which cost US$5,000 or more to order, were not widely adopted because they are difficult to engineer and expensive, says James Haber, a molecular biologist at Brandeis University in Waltham, Massachusetts. CRISPR works differently: it relies on an enzyme called Cas9 that uses a guide RNA molecule to home in on its target DNA, then edits the DNA to disrupt genes or insert desired sequences. Researchers often need to order only the RNA fragment; the other components can be bought off the shelf. Total cost: as little as $30. “That effectively democratized the technology so that everyone is using it,” says Haber. “It's a huge revolution.”